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An algorithm to optimize the equivalent network
for dielectrics
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Irbid, Jordan

An algorithm is derived to optimize the number of branches in the equivalent network

representing dielectric dispersion with many relaxation times. The algorithm is

characterized by deriving general normalized relations. Satisfactory results are obtained

for a network with more than 50% reduction in the number of branches for dispersion data

of perfluoropolyether dielectric. The method is directly applicable to dispersion relations

featuring weakly overlapping arcs in the complex plane of the dielectric constant. The

procedure is also extendible for relations with strong arcs overlapping, such as in polymers

and composite materials.
1. Introduction
Most dielectric materials employed in technological
and industrial applications have dispersion with fre-
quency featuring many relaxation times. In those
materials the dispersion of dielectric constant is char-
acterized by a continuum in relaxation time rather
than discrete time constants. Subsequently their
equivalent networks take distributed forms. However,
practical applications require implementing these net-
works as parts of the models used in industrial and
electronic systems. Therefore, a distributed network
has to be reduced to a discrete form constituting
lumped elements. This has been realized for dielectrics
of ZnO and InP-oxide in the frequency range of few
tens of Hz to several MHz [1, 2]. Evaluation of the
networks have been facilitated using the relaxation
time distributions (RTD), as derived from the mul-
tiple-arc analysis, along with their pertinent paramet-
ric functions [3]. In the adopted procedure, the
discrete elements were determined over equal intervals
of the relaxation time function. The accuracy of the
network was then examined by comparing the experi-
mentally evaluated components of the complex dielec-
tric constant with those computed from the discrete
equivalent network. However, practicality of the
model dictates also that the network should be simple.
This can be accomplished by reducing the number of
branches, but at the expense of accuracy. Alterna-
tively, this paper suggests a novel approach to opti-
mize the network while preserving a high degree of
controllable accuracy. The devised algorithm is based
on the RTD function and its derivative.

2. Basic formulations
In principle, the proposed approach is equally ap-
plicable to dispersion relations describing single circu-
lar arc or multiple arcs in the complex plane of the
0022—2461 ( 1997 Chapman & Hall
dielectric constant. Meanwhile, to grasp the essential
characteristics of the approach, a single arc relation is
considered in the analysis.

For a dielectric dispersion featuring single arc rela-
tion in the complex plane, the real and imaginary
components of the constant are, respectively, ex-
pressed as [4]
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where f (u) is the relaxation time distribution and given
as [5]
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with u as the relaxation time, and s, the function

u " ln(s/s0)
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are the static and high frequency constants,

respectively. s
0

is the most probable relaxation time
and a designates the degree of spread in the distribu-
tion taking values between 0 and 1, with the 0 value
corresponding to single relaxation time [5]. Equations
1 and 2 lead to a direct network representation for the
dielectric in the form of a distributed R-C (Resistance-
Capacitance) network, as shown in Fig. 1. The corre-
sponding network elements are expressed as [4]

de " e6 (u)du

and

dr " r6 (u)du

where e6 (u) and r6 (u) are parametric variables given
as [3]
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Figure 1 The distributed R-C equivalent network.

and
r6 (u) " e

0
e6 (u)/s (5)

The parametric functions can provide a consistent and
solid means to derive the discrete network, namely by
integrating Equations 4 and 5 over a constant interval
*u whereby an R-C branch is defined. The procedure
is then repeated over the effective u-range. The total
permittivity is subsequently obtained as
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where K designates a branch, and ¸ is the number of
branches over the effective u-range. Referring to Equa-
tions 4 and 5, s

K
is given as
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for the K branch.
It is worth pointing out that in the limit where *u

tends to zero, Equation 6 approaches Equation 1.
A similar approach has been applied on the dispersion
data of ZnO varistor and InP-oxide yielding, respec-
tively, 20 and 8 branches. With the resulting networks,
satisfactory degrees of accuracy have been realized
over the frequency range of 30 Hz to nearly 10 MHz
[1, 2].

However, such an arbitrary procedure may, un-
necessarily, yield a large number of branches because
it relates the accuracy of the network to the number
of branches only. Alternatively, a new method is de-
vised here whereby the number of branches is func-
tionally related to the RTD function and its derivative.
The proposed procedure is merely concerned with the
integration processing of Equation 4, over the interval
*u. Keeping *u constant throughout the entire u-
range is considered as a linear processing. Hence,
the task here is to devise a non-linear processing
whereby the interval *u becomes variable. To derive
this trend of variation, exact differential treatment
is regarded more appropriate. Subsequently, *u is
initially replaced by a small incremental quantity
du. As the integral of Equation 4 represents the area
under e6 (u), shown in Fig. 2 then comparing the in-
cremental areas dA

2
and dA

1
, at arbitrary u-value,

yields
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1

"

d f (u)du

2 f (u)du
(8)
6222
Figure 2 The incremental areas under a distribution function f (u).

As the increments used tend to zero in the limit, they
are replaced by differential notation. The numerator
in Equation 8 is regarded as a second order differen-
tial, while the denominator designates a first order
differential. Hence, the ratio in Equation 8 can be
equated to a new differential ­z. By assuming ­z as an
infinitesimal independent quantity, then the following
relation is established

­ f (u)

f (u)
" ­z

the factor of 2 being merged with ­z. Substituting
­ f (u) by fM (u)­u, where fM (u)"­ f (u)/­u, and taking into
account a possible negative value for fM (u), then

­u " K
f (u)

fM (u) K­z (9)

Although, ­u can, in principle, be expressed in terms
of any variable coefficient with ­z, the derived func-
tion has certain desirable particulars. On one hand,
the coefficient is correlated to the distribution func-
tion, and further resembles the distribution even sym-
metry around u. On the other hand, the coefficient
introduces no substantial error under the condition
of a high f (u) and low fM (u) values, where *u interval
takes a large value. As indicated by Equation 3
the interval coefficient in Equation 9 is strongly in-
fluenced by the spread parameter a. Subsequently, the
relevant characteristics are investigated in the next
section.

3. Method characterization
Substituting f (u) and fM (u) the interval coefficient in
Equation 9 becomes

K
f (u)

fM (u) K " (1!a)~1 D coth(1!a)u

!cos(ap) csch(1!a)u D (10)

where (csch"hyperbolic cosecant). Fig. 3 depicts the
variations of the interval coefficient with u for



Figure 3 (a) The interval coefficient characteristics with u for the
a range of 0.2—0.4. (b) The interval coefficient characteristics with
u for the a range of 0.5—0.7.

different values of a ranging from 0.2 to 0.7. Conse-
quently, the a parameter has a direct influence on
the number of network branches. This aspect is fur-
ther characterized by assigning the value of 16
for the u-range. This corresponds to more than
eight orders of magnitude from the upper to the
lower frequency. The upper frequency x

)
is taken

at s~1
-

and normalized to s~1
0

. s~1
-

marks the
lower limit in the u-range. In the course of ap-
proximation whereby *u and *z replace ­u and ­z,
*z is designated as the accuracy parameter for the
discrete network. Fig. 4 illustrates a group of charac-
teristics relating the number of branches N to the
spread parameter a for different values of *z. To
insure a high degree of computational accuracy, the
effective u-range is divided into 1600 segments. This
measure seems to be necessary since Equation 10 takes
very high values near u"0. Furthermore, following the
symmetry in Equation 10, *u intervals are evaluated
symmetrically over the u-range so that equal intervals
are located at equal positions from u"0.

Close examination of Equation 1 in conjunction
with Equation 6 indicates that maximum percentage
of error, e

.!9
, occurs at high frequency. This feature is

based on discarding e
=

from Equations 1 and 6, i.e.
regarding only the dispersive parts in the expressions.
Figure 4 The variation of number of branches N with the spread
parameter a for different *z values: (£) 0.4; (#) 0.5; ( ) 0.6; (j) 0.7;
(]) 0.8; ( ) 0.9; (n) 1.0.

Figure 5 The variation of e
.!9

with a for different *z values: (£) 0.4;
(#) 0.5; ( ) 0.6; (j) 0.7; (]) 0.8; ( ) 0.9; (n) 1.0.

Under this condition, e
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takes the form
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Fig. 5 shows the variation of e
.!9

with a for different
values of the accuracy factor *z. The very small nega-
tive error values at low a values can be attributed to
the inevitable error in numerical computation. These
characteristics can be directly employed in the design
of equivalent network for dielectrics, provided that the
dispersion data fits circular arc, or arcs, in the complex
plane of the dielectric constant. The procedure of
optimization is demonstrated on the dispersion data
for perfluoropolyether dielectric and given in the next
section.

4. Results and discussion
The dispersion data reported for perfluoropolyether
dielectric [6] describes a single circular arc over the
6223



Figure 6 The RTD function for perfluoropolyether dielectric.

Figure 7 The interval coefficient variation with u for the per-
fluoropolyether dielectric.

Figure 8 The variation of e
.!9

with N for perfluoropolyether dielec-
tric for different *z values: (£) 0.4; (#) 0.5; ( ) 0.6; (j) 0.7; (]) 0.8;
( ) 0.9; (n) 1.0; (£) 1.1.

frequency range of 100 kHz to 100 MHz. The evalu-
ated parameters of the arc are [2] e

4
"202, e

=
"3,

a"0.41, s
0
"40]10~9 s. Using the procedure and

relations outlined in Section 3, a complete character-
ization for the optimum network has been achieved.
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Figure 9 The variation of relative permittivity with frequency for
distributed and discrete networks. (———) Distributed network (exact);
( ) discrete network (approximate).

Figure 10 The variation of resistivity with frequency for distributed
and discrete networks. (———) Distributed network (exact); ( ) dis-
crete network (approximate).

The RTD function is shown in Fig. 6, while the inter-
val factor, given by Equation 10, is depicted in Fig. 7.
Correlation of the error e

.!9
to the number of

branches N is illustrated in Fig. 8 for a range of values
for the accuracy factor *z, indicating an expected
trend of variation. However, the small negative e

.!9
value at a high N value could again be attributed to
the inevitable error in numerical computation.

To verify the effectiveness of this methodology, the
point corresponding to minimum number of branches,
in Fig. 8, is chosen with N"9 and e

.!9
"9.0%.

Subsequently, exact distributed network is compared
with the nine branches network in Fig. 9 for e@(x) and
in Fig. 10 for the resistivity q(x). Computations of
these variables have been carried out using Equations
1, 2, 6, 9, 10 and 11. Both figures indicate satisfactory
agreements over the frequency range from 50 kHz to
100 MHz, which is close to that specified by the u-
range. This achievement marks more than 50% reduc-
tion of branches when compared to an earlier reported
network of 20 branches [2], in addition to an im-
proved accuracy. The network parameters are given in
Table I.



TABLE I Network parameters

Branch K s
K

e
K

r
K

(s) (relative) () cm)~1

1 3.489]10~11 1.85 4.69]10~1
2 2.201]10~10 5.50 2.21]10~1
3 1.354]10~9 16.35 1.07]10~1
4 8.03]10~9 46.54 5.13]10~2
5 3.667]10~8 57.05 1.377]10~2
6 3.46]10~5 1.855 4.744]10~7
7 5.518]10~6 5.523 8.86]10~6
8 9.045]10~7 16.4 1.604]10~4
9 1.522]10~7 46.66 2.712]10~3

5. Conclusions
A simple algorithm has been devized to optimize the
equivalent network for a dielectric characterized by
a distribution of relaxation times. The proposed
procedure takes into account the distribution func-
tion, and its derivative, in defining the relaxation time
interval for each network branch. The optimization
has been applied on the dispersion data perfluoro-
polyether dielectric yielding more than 50% reduction
in branches in addition to an improved accuracy for
the network.

In principle, the methodology is applicable to dis-
persion relations featuring multiple arcs and in par-
ticular those with weak overlapping, such as in ZnO
varistors [4, 7]. This may be readily accessible by
treating each arc separately according to the algo-
rithm while taking into account the arc’s weighting
factor [7]. Evidently, more efforts may be required in
standardizing the procedure for arcs with strong over-
lapping [4], which is likely to be the case in polymeric
and composite materials.
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